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Installation Instructions

 ! Log in with administrator privileges.  This is necessary to install
and register controls.  This is needed for the initial installation
only.  Subsequent updates will not require administrator
privileges.

 
 ! Caution: This upgrade will install over previous version. If you

wish to retain previous versions of ProUCL you will need to

manually rename that directory and manually delete the existing

ProUCL icon.

 ! It is strongly recommended that you exit all windows programs
before running the setup program.

 ! Run the setup program contained on the CD.

 ! When prompted, accept the default directory or select another
one of your choice.

Minimum Hardware Requirements

 ! Intel Pentium 200MHz

 ! 10 MB of hard drive space

 ! 48 MB of memory (RAM)

 ! CD-ROM drive

 ! Windows 98

Program  ProUCL Menu Structure



5

The menu structure of ProUCL is similar to a typical Widows
program. The screen below appears when the program is executed.

The following menu options appear on the screen 

1. File

2. View

3. Help

The options available with these menu items are described next.
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1. File 

Click on the File menu item to reveal these drop-down options.

The following File drop-down menu options are available:

 ! New option: creates new spreadsheet.

 ! Open option: browses the disk for a file.  The browse program
will start in the working directory if a directory has been set.

 ! Working directory option: select and set a working directory.
Note: A file within a directory must be selected before setting
the directory.  All subsequent files are read from and saved in
the chosen working directory.

 ! Print Setup option: sets printer options.

 ! Click on a previously used file to re-open that file.
 ! Exit option: exits ProUCL.
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2. View

 Click on the View menu item to reveal these drop-down options.

The following View drop-down menu options are available:

 ! Toolbar: the Toolbar is that row of symbols immediately below
the menu items.  Clicking on this option toggles the display.
This is useful if the user wants to view more data on the screen.

 ! Status Bar: the Status Bar is the wide bar at the bottom of the
screen which displays helpful information.  Clicking on this
option toggles the display.  This is useful if the user wants to
view more data on the screen.
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3. Help 

Click on the Help menu item to reveal these drop-down options.

The following Help drop-down menu options are available:

 ! Help Topics option: at present no online help is available. This
may be available in the next version of ProUCL.

 ! About ProUCL: displays the program version number.
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Main Menu Structure of ProUCL

The following menu structure of ProUCL appears after opening or
creating a data file.

The following menu items are available.

1. File
2. Edit
3. View
4. Options
5. Summary statistics
6. Normality test
7. UCL
8. Window
9. Help

The options available with these menu items are described next.
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1. File

Click on the File menu item to reveal these drop-down options.
The following File drop-down menu options are available:

 ! New option: opens a blank spreadsheet screen.

 ! Open option: browses the disk and selects a file which is then
opened in spreadsheet format.  The browse program will start in
the working directory if a working directory has been set.

 Recognized input format options:
Text        *.txt (tab delimited)
Excel      *.xls
Lotus      *.wk?
Lotus      *.123
Default -   *.* will be read in Excel format.

 ! Close option: closes the active window.
 ! Save As option: allows the user to save the active window.
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Follows the Windows standard and writes to a file in Excel 95
format. All modified/edited data files, and output screens
generated by the software, can be saved in Excel 95 format.

 ! Working directory option: selects and sets a working directory
for all I/O actions.  All subsequent files are read from and saved
in the working directory.  You must select a file before you set
the working directory.

 ! Print option: sends the active window to the printer.

 ! Print Preview option: displays a preview of the output on the
screen

 ! Print Setup options: follow Windows standard.  The user can
chose the landscape format under this option.
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Input File Format 

 ! The program can read Tab delimited Text (ASCII), Excel, and
Lotus files. 

 ! Columns in a Text (ASCII) file should be separated by one tab.
Spaces between columns are not allowed in this format.

 ! The input data file should have column labels in the first row
and data without text (e.g., non-numeric and  blank values) for
those variables in  the  remaining  rows.

 ! The data file can have multiple variables (columns) with
unequal number of observations.

 ! Non-numeric text may only appear in the header row (first row)
of each column.  All other non-numeric data (blank, other
characters, and strings) appearing elsewhere in the data file are
treated as  zero entries. The user should make sure that his data
set does not contain such non-numeric values.

 ! Alternatively, a large value =  1E31 (=1x1031) can be used for
missing (blank, or  non-numeric values) observations (just as in
Scout (1999) software).  All values with this large value are
ignored from all of the computations. 

 ! Data in each column must end with a non-zero value. The last
non-zero entry in each column is considered as the end of that
column’s data.  If your data column ends with a zero value, that
last zero value will be ignored.  This may require you move
observations around if your column data ends with zero values.

 
 ! Note that all other zero data (in the beginning or middle of a

data column) are treated as valid zero values.
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 ! At present, the program does not handle the left-censored data
sets with non-detects. 

 

Result of Opening an Input Data File

 ! The data screen follows the standard Windows design.  It can be

resized, or portions of data can be viewed using scroll bars. 

 ! Note that scroll bars appear when the window is activated and
the title bar is highlighted.

2. Edit
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Click on the Edit menu item to reveal drop-down options.
The following Edit drop-down menu options are available:

 ! Erase option: is used to remove  the highlighted portion of the
data. Note that the erased data is not written to any buffer and
cannot be recovered.  Therefore,  when erased, it is gone.

 ! Copy option: is similar to a standard Windows Edit option  such
as in Excel.  It performs typical edit functions of copying
highlighted data to a buffer.

 ! Paste option: is similar to a standard Windows Edit option  such
as in Excel.  It performs typical edit functions of pasting data
from a buffer to the current spreadsheet cell.   

3.View

Click on the View menu item to reveal these drop-down options.
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The following View drop-down menu options are available:

 ! Toolbar: the Toolbar is that row of symbols immediately below

the menu items.  Clicking on this option toggles the display.
This is useful if the user wants to view more data on the screen.

 ! Status Bar: the Status Bar is the wide bar at the bottom of the
screen which displays helpful information.  Clicking on this
option toggles the display.  This is useful if the user wants to
view more data on the screen.
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4. Options

Click on the Options menu item to reveal these drop-down options.

Currently, Set Data is the only drop-down menu option available:

 ! Set Data option: resets the active portion of the data window.
The program examines the active spreadsheet and selects
default values representing the first row of data (row 2), the last
row which contains data (dependent on actual data), the
leftmost column (typically column 1) where data and text occur,
and the rightmost column (dependent on actual data) where data
and text occur.  Extreme caution should be taken when varying
from the default values.

 ! Note: This menu item is optional.  The user can pre-process

the data by using the Excel program.
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The Data Location Screen

The following Data location screen appears.

 ! It is recommended to use the default settings for the data

screen.  This means that all of  the data will be processed.

 ! The first row in the spreadsheet contains the alphanumeric text
(column headings), not data.

 ! The default top row of data is row 2.  This value can be changed
to process a subset of the data in the spreadsheet.

 ! The default bottom row is the last row in the spreadsheet which
contains nonzero data.  This value can be changed to process a
subset of the data in the spreadsheet.

 ! The selected data must correspond to the same columns as the
text in the first row.  The Leftmost column value (column
number) cannot be changed by the user.  

 ! Caution: it is possible to confuse the program by highlighting a
portion of the spreadsheet before invoking this option,
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unpredicted results will occur.

 ! The Rightmost column number can be changed by the user.
Note that you must have a column of data for any variable
requested.

 ! Caution: Blank cells in the top data row may confuse the
automatic sizing algorithm.  The user can manually override this
confusion by re-setting the rightmost column value in this
option. 
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5. Summary statistics
 

 ! This option computes general summary statistics for all

variables in the data file.

 ! Two Choices are available:

Raw data  (the default option)
Log-transformed data (Natural logarithm)

 ! In ProUCL, Log-transform means natural logarithm (ln).

 ! When computing summary statistics for raw data, an
informative message is displayed for each variable which may
contain non-numeric or  non-positive values.

 ! The Summary statistics option  computes log-transformed data
only if all of the data values for the selected variable are
positive real numbers.  A message will be displayed if non-
numeric characters,  zero, or negative values are found in the
column corresponding to the selected  variable.  
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Summary Statistics

Click on the Summary statistics menu item to reveal this drop-down
option.

When the user clicks on the Compute
option button, the window given on
the right appears.

 ! Select your data choice, and click on the Compute button to
continue or on the Cancel button to cancel the summary
operations.

 ! The results screen follows the standard Windows design.  It can
be edited, widened, printed, resized, or scrolled.

 ! The resulting summary statistics screen can be saved as an
Excel file.
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Results Obtained Using the Summary Statistics Option

On the results screen,  the following summary statistics are displayed
for each variable in the data file.  These are described in Appendix A.

 - NumObs - Number of Observations.
 - Minimum - Minimum value.
 - Maximum - Maximum value.
 - Mean - Average value.
 - Median - Median value.
 - Std. Dev.- Standard Deviation.
 - CV - Coefficient of Variation.
 - Skewness - Skewness statistic.
 - Variance - Variance statistic.

Printing Summary Statistics

 ! The summary statistics results and all other results can be
printed by clicking the Print option under the menu item File.
It is recommended that these statistics be printed in landscape
format which is available under the Print Setup option.

6. Histogram
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 ! This option produces a histogram for a selected variable in the
data file.

 
 ! For  data sets with more than one variable, the user should

select a variable first. The histogram is computed and

displayed for the selected variable, one variable at a time.

- By default, the  program selects the first variable.

 ! The  user specifies if the data should be  transformed.

- The default  choice is to display a raw data histogram.

 ! Two Choices are available:

Raw data  (the default option)
Log-transformed data (Natural logarithm)

 ! In ProUCL, Log-transform means natural logarithm (ln).

 ! The user can select the number of bins for the histogram.

 The default is 15 bins.

 ! Note that in order to display and capture the best histogram

window, the user may want to maximize the window before

printing.
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Histogram Screen

 ! Click on the Histogram menu item and select the Draw
histogram option.

 ! Select Raw data or Log transformed data.

 ! You can change the number of bins to display.

 ! Select the variable you wish to view the histogram and then hit
the display key to view the histogram.
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Results of Histogram Option 

 ! The Histogram window shown above has been resized for
display and reflects the default values shown on the previous
page.

 ! You may close the window using normal windows operations
or click on the Close window button at the bottom left corner of
the screen.

 ! The histogram can be printed or copied  by clicking on the right
button on mouse.
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7. Normality test

 ! This option tests the  normality or lognormality of  the variable
selected by the user.

 ! For  data sets with more than one variable, the user should

select a variable first. The normality is tested and displayed

for the selected variable, one variable at a time.

- By default, the  program selects the first variable.

 ! The  user specifies the transformation (normal or lognormal).

- The default  choice is to test for normality.

 ! The user specifies level of significance. Three choices are
available  for the level of significance: 0.01, 0.05, or 0.1

- The default choice for level of significance is 0.05

 ! The program ProUCL  plots a normal quantile-quantile (Q-Q)
plot for the selected variable (or the log-transformed variable).

 ! The linear pattern of the Q-Q plot suggests approximate
normality (or lognormality).

 ! The Program computes the intercept, slope, and correlation
coefficient for the linear pattern displayed by the Q-Q plot. A
high value (e.g.,  >0.95) of the correlation coefficient is an
indication of approximate normality.  Note that these statistics
are among those displayed on the Q-Q plot.

 ! Typically, on this graph, observations well separated from the
bulk (central part) of data are potential outliers needing further
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investigation.

 ! In addition to the graphical Q-Q plot, two more powerful
procedures are also available to test the  normality or
lognormality of the data.  These are:

S Lilliefors Test: a test typically used for samples of  larger
size (> 50).  When the sample size is greater than 50, the
program defaults to the Lilliefors test.  However,  note
that the Lilliefors test is available for samples of all sizes.

S Shapiro and Wilk W-Test: a test used for samples of
smaller size ( <=50). At present, W-Test is available only
for samples of size 50 or less.

 ! ProUCL  computes the relevant test statistic  and the associated
critical value, and prints them on the associated  Q-Q plot.

 ! On this Q-Q plot, the program informs the user if the data are
normal (or lognormal).

 ! The Q-Q plot can be printed or copied by clicking the right
button on the mouse.

 ! Note  that in order to capture the entire graph window, the user

may want to maximize the window before printing.
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Normality test Screen

 ! Click on the Normality test menu item and select the Perform
normality test option.

 ! Select either the  Normal option  or the  Lognormal option.

 ! Select the variable, select a Level of Significance,  and then
click on the test (Lilliefors or Shapiro-Wilk) you wish to
perform.

R e s
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ults of Normality test Option 

 ! The Q-Q plot window shown above has been resized for
display.

 ! Two different Q-Q plot windows are produced for each
Normality test request: using the original data (shown above)
and  the  standardized data.
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8.  UCL

 ! This option computes the UCLs for the selected variable.

 ! This option  allows  the user to choose  one or more methods
from the several (10) available methods to compute a UCL of
the population mean.

 ! By default, the program computes UCLs using all available
methods.

 ! The user specifies the confidence level: a number in the interval
(0.5, 1).  The default choice is 0.95. 

 ! The program  computes several non-parametric UCLs using the
Central Limit Theorem, Chebyshev inequality, Jackknife, and
Bootstrap procedures.

 ! For the bootstrap method, the user can specify the number of
bootstrap runs.  The default choice for the bootstrap runs is
2000.  

 ! The user is responsible for making an appropriate choice about
data distributions - normal or  lognormal.  The user determines
the data distribution using the normality test option.  The
program informs the user if the data are normal or lognormal.
The program computes the relevant statistics using this choice.

 ! For data sets which are neither normal nor lognormal, ProUCL
computes UCLs  using non-parametric procedures.

 
 ! For lognormal data sets, ProUCL can compute only a 90% or a

95% H-statistic based H-UCL of the  mean. For all other
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methods, it can compute a UCL for any confidence coefficient
in the interval (0.5,1.0).

 ! For lognormal distributions, when the user wants to compute a
95% UCL, ProUCL also provides a recommended UCL
computation  procedure. This is particularly helpful when the
skewness is high, that is, the standard deviation of the log-
transformed data starts exceeding 1.

 ! For lognormal data sets, the program also computes the
Maximum Likelihood Estimates (MLEs) of  the population
percentiles, and the minimum variance unbiased estimates
(MVUEs) of population mean, median, standard deviation, and
the standard error (SE)  of the mean.

 ! ProUCL can compute  the  H-UCL for samples of size  up to
1000 using the critical values as given by Land (1975).

 ! The detailed  theory and formulae to compute these  statistics
are given by Land (1971, 1975), Gilbert (1987), Singh, Singh,
and Engelhardt (1997, 1999), and Singh et al. ( 2000).

 ! For the sake of completeness of this User’s Guide, all formulae
and methods used in the development of the program ProUCL
are summarized in Appendix A.
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UCL Computation Screen

Click on the UCL menu item and then click
on the All-UCL option.

 ! Note that the UCLs are computed for one variable at a time.
The user selects a variable from the variable list.

 ! The user may change the Confidence Coefficient (Default is
0.95).  The range allowed is between 0.5 and 1.0.

 ! The  user m ay adjust the number
of bootstrap runs (Default is 2,000)
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 ! The user selects the Normal or Lognormal Data option

 ! The user may de- select any unwanted
UCL computations procedures.

 ! Finally, the user c l i c k s  o n  t h e
C o m p u t e  U C L button.
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Results Screen of  UCL Computations

 ! On the output of ProUCL, Chebyshev (Mean, Std)  stands for a
Chebychev UCL of the mean computed using the  sample
arithmetic mean and standard deviation.

 ! 95% Chebyshev (MVUE) UCL stands for a 95% UCL of the

mean obtained using the MVUEs of the mean and standard

error of the mean assuming a lognormal distribution.

 ! 99% Chebyshev (MVUE) UCL stands for a 99% UCL of the

mean obtained using the MVUEs of the mean and standard

error of the mean assuming a lognormal distribution. 
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9. Window

Click on the Window menu to reveal these drop-down options,

The following Window drop-down menu options are available:

 ! New Window option: opens a blank spreadsheet window

 ! Cascade option: arranges windows in a cascade format. This
is a typical Windows program option.

 ! Tile option: resizes each window and then displays all open
windows.  This is a typical Windows program option.

 ! Arrange Icons is a typical Windows program option.

 ! The drop-down options include a list of all open windows
with a check mark in front of the active window.  Click on
any window listed to make that window active.
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10. Help 

Click on the Help menu item to reveal these drop-down options.

The following Help drop-down menu options are available:

 ! Help Topics option: at present no online help is available.
This may be available in the next version of ProUCL

 ! About ProUCL: displays the program version number.
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Run Time Notes
 
 ! If you have multiple windows open as shown below, you no

longer need to make sure to highlight the data window before
performing any computations.

 ! You can now do Summary Statistics, Normality Test or UCL
with the screen like the above.
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 ! Cell size can be changed.  The user can change the size of a
cell by moving the mouse to the top column (the grey shaded
column with a letter), then moving the mouse to the right side
until the cursors changes to an arrow symbol (ø), depress the
left mouse button.

 ! This
c an
be used to reveal additional precision or hidden text.
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Rules to remember when editing or creating a new data file.

 ! Text may appear in the first row only.  This row has column
headers (variable names) for your data.

 ! All alphanumeric text (including blanks, strings) appearing
elsewhere (other than first row) will be treated as zero data.

 ! Missing data (alphanumeric text, blanks) can be set to a large
value=1E31. All entries with this value will be ignored from
the analysis. 

 ! The last data entry for each column must be non-zero.   The
program determines the number of observations by working
backwards up the data until a non-zero value is encountered. 
Data in each column must end with a non-zero entry as shown
above otherwise that zero value will be ignored.  Note that,
all intermediate zero entries are treated as valid data.

 ! It is recommended to use the default settings of the Data
location screen when working with your data. 

Recommendations to Compute a 95% UCL of the Population
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Mean (The Exposure Point Concentration (EPC) Term)

This section describes the recommendations on the computation
of  a  95% UCL of  the unknown population arithmetic mean,  :1 of
a contaminant data distribution. These recommendations are based
upon the  findings of  Singh, Singh, and Engelhardt (1997, 1999) and
Singh et al. (2000).  Recommendations have been summarized  for:
1) normally  distributed data sets, 2) lognormally distributed data sets,
and 3) data sets which are neither normal nor lognormal (non-
parametric data).

Normally Distributed Data sets

 ! For normally distributed data sets, a UCL based upon the
Student’s t-statistic  provides the optimal UCL of the population
mean. Therefore,  for  normal data sets,  one should use a  95%
UCL based upon Student’s  t-statistic.

 ! The 95% UCL of the mean  based upon Student’s t can also be

used  when the  sd,  (an estimate of F) of the log-transformed
data is less than 0.5, or when the data set approximately follows
a normal distribution.

Lognormally Distributed Data sets

For lognormal distributions, since skewness is a function of ,
recommendations for the UCL computation methods (Table 1) are
summarized for various values of   and the sample size, n.  Note that
the following table is applicable to the computation of a 95% UCL
of the population arithmetic mean (AM) based upon lognormally
distributed data sets. 

Note:  represents the sd of log-transformed data.
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Table 1.  Summary Table for the Computation of a

95% UCL of the Unknown  Mean,  :1, of a Lognormal

Population

 Sample Size,

n

Recommendation

           < 0.5 For all n ($5) Student’s t or H-UCL

0.5 #   < 1.0 For all n  H-UCL

1.0 #  < 1.5 n < 25 95% Chebyshev (MVUE) UCL

n $ 25 H-UCL

1.5 #  < 2.0
n<20 99% Chebyshev (MVUE) UCL

20# n<50 95% Chebyshev (MVUE) UCL

n$50  H-UCL

2.0 #  < 2.5
n<25 99% Chebyshev (MVUE) UCL

25 # n  < 70 95% Chebyshev (MVUE) UCL

n $ 70 H-UCL

2.5 #  < 3.0

n < 30 Larger  of (99% Chebyshev (MVUE) UCL,  
                  99% Chebyshev(Mean, Std))

30 # n <70 Larger  of (95% Chebyshev (MVUE) UCL,  
                  95% Chebyshev(Mean, Std))

n $70 H-UCL

3.0  #  
n small Needs further investigation

n>100 H-UCL
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Data Sets Without a Discernable Distribution (Non-parametric)

 ! For mild to moderately skewed data sets (e.g.,   in the interval

(0.5, 1)), one may use a 95% Chebyshev (Mean, Std) UCL for

the population  mean, :1. Note  is sd of log-transformed data.

 ! For  moderate  to highly  skewed  data sets (e.g., in   the
interval (1.0, 2.0)), one may use a 97.5% Chebyshev (Mean,

Std) UCL for the population  mean, :1.

 ! For highly skewed to extremely highly skewed data sets with 
 in the interval (2.0, 3.0),  one may use a  99% Chebyshev

(Mean, Std) to compute a UCL of the population mean, :1. 

 ! Extremely skewed data sets with  exceeding 3.0 are  not well-
behaved and need further investigation.  For such data sets, even
a 99% Chebyshev (Mean, Std) UCL may fail to provide the
specified coverage to the population mean. This is especially
true when the sample size is small.

 ! It is observed that the UCL based upon the bootstrap-t

procedure is more conservative than the  UCLs obtained using

the Student’s-t modified-t, adjusted-CLT, and standard bootstrap
methods.  This procedure was not included in the Monte Carlo
simulation  study conducted by Singh et al. (2000).  It is likely
that the UCL based upon the bootstrap t- procedure may provide
better coverage of  the population mean. This procedure needs
further investigation.

 ! It is also desirable to use other distributions, such as the Gamma
and Weibull distributions, to model highly skewed data sets.

 
It should be pointed out that, depending upon his or her application,
the user may decide to use (or not use) any of the 10 available
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procedures incorporated in the program, ProUCL.
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METHODS FOR COMPUTING THE EPC TERM ((1-") 100%UCL) 

 AS INCORPORATED  IN THE  PROGRAM  ProUCL

1.0 Introduction

In environmental applications of the U.S. EPA, exposure assessment and

cleanup decisions are often made based upon the mean concentrations of the

contaminants of potential concern.  A 95% upper confidence limit (UCL) of the

unknown  population  arithmetic mean (AM), :1 , is often used to:  estimate the

exposure point concentration (EPC) term (EPA, 1992), determine the

attainment of cleanup standards (EPA, 1989 and 1991), estimate background

level contaminant concentrations, or compare the soil concentrations with  site

specific soil screening levels (EPA, 1996).  It is, therefore, important to

compute a reliable, conservative, and stable 95% UCL of  the  population mean

using the available data. 

Computation of a (1-") 100% UCL of the  population  mean  depends

upon the data distribution. Typically, environmental data are  positively

skewed, and a default lognormal distribution (EPA, 1992) is often  used to

model such distributions.  The H-statistic based Land’s (Land 1971, 1975) H-

UCL of the mean is used in these applications.  Hardin and Gilbert (1993), and

Singh, Singh, and Engelhardt (1997,1999), Singh et al. (2000), pointed out

some problems associated with the use of the lognormal distribution and the

H-UCL of the population  AM.  In practice, for skewed  lognormal data sets

with high  standard deviation (sd), F  of  the natural log-transformed data (e.g.,

F exceeding 1.5), the H-UCL can become  unacceptably  large, exceeding the

95% and 99% data quantiles, and even  the  maximum observed concentration,
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by orders of magnitude (Singh, Singh, and Engelhardt, 1997). This is

especially true for samples of small sizes with high values of  F (or its estimate,

sy).  In those cases, the maximum observed concentration is used as an estimate

of the  EPC  term (EPA, 1992) in exposure assessment applications. 

The program, ProUCL, has been developed to test normality or

lognormality of the data distribution, and to compute a conservative and stable

UCL of the population mean.  Singh, Singh, and Engelhardt (1997,1999, 2000)

studied several  parametric and non-parametric UCL computation procedures

which have been included in the program, ProUCL.  All  mathematical

algorithms and formulae used by ProUCL to compute the various statistics  are

summarized in this Technical Background Appendix, A.  ProUCL computes

the various summary statistics for raw, as well as log-transformed data.  In this

User’s Guide and in ProUCL, log-transform (log) stands for the natural

logarithm  (ln) to the base e.  ProUCL also computes the maximum likelihood

estimates (MLEs) and the minimum variance unbiased estimates (MVUEs) of

various  unknown population parameters.  This, of course, depends upon the

underlying data distribution.  Based upon the data distribution, ProUCL

computes the  (1-") 100% UCLs of the population mean using parametric and

non-parametric procedures.  It is observed that the Chebyshev inequality based

UCLs provide conservative alternatives  to compute a 95% UCL of the mean

from moderately to highly skewed lognormal data sets, and other skewed non-

lognormal data sets. 

At present, ProUCL does not handle non-detects and missing data.  The

program can be modified (e.g., in the next version of ProUCL) to incorporate

procedures which can be used to compute estimates of the population mean
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and standard deviation, and a UCL of the mean for left-censored data sets with

non-detects.

2.0 Procedures to Test Normality and Lognormality of a Data set 

ProUCL tests the normality or lognormality of  the data set using the

three different  procedures described below.  The program tests normality or

lognormality at three different levels of significance,  namely, 0.01, 0.05, and

0.1. The details of these procedures can be found in the references cited.

2.1 Quantile-Quantile (Q-Q) Plot 

This is  a simple graphical procedure to test for approximate  normality

or  lognormality of a data distribution (Hoaglin, Mosteller, and Tukey (1983),

Singh (1993)).  A  linear pattern displayed by the bulk of the data suggests

approximate  normality or lognormality of the data distribution.  For example,

a high value (e.g., 0.95 or greater) of  the correlation coefficient of the linear

pattern suggests  approximate normality (or lognormality) of the data set under

study.  On this graphical display, observations well separated from the linear

pattern displayed by the bulk data represent the outlying observations. The

graphical Q-Q plot test should always be accompanied  by other more powerful

tests, such as the Shapiro-Wilk test or the Lilliefors test.  The program ProUCL

always performs the graphical Q-Q plot test on raw data as well as on

standardized data.
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2.2 Shapiro-Wilk W Test

This is a powerful test and is often used to test the normality or

lognormality of the data distribution under study (Gilbert, 1987).  The program

ProUCL, performs this test for samples of size 50 or smaller.  Based upon the

selected level of significance and the computed test statistic, ProUCL also

informs the user if the data are normally (or lognormally) distributed. The user

should use this information  to obtain  an appropriate UCL of the mean. The

program prints the relevant statistics on the Q-Q plot of the data (or the

standardized data).  For convenience, the normality (or lognormality) test

results at 0.05 level of significance are also displayed  on  the UCL  output

Excel summary sheet. 

2.3 Lilliefors Test

This test is particularly useful for data sets of larger size (Dudewicz and

Misra, 1988).  ProUCL performs this test for samples of sizes up to 1000.

Based upon the selected level of significance and the computed test statistic,

ProUCL also informs the user if the data are normally (or lognormally)

distributed.  The user should use this information  to obtain an appropriate

UCL of the mean. The program prints the relevant statistics on the Q-Q plot of

data (or standardized data). For convenience, the normality (or lognormality)

test results are also displayed on the UCL output Excel summary  sheet. 
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3.0 Data

Let x1, x2, ... , xn be a random sample from the underlying population (e.g,

remediated part of a site) with unknown  mean, :1, and variance, F1
2.  Let  :

and F represent the population mean and the population standard deviation (sd)

of the log-transformed (natural log  to the base e) data.  Let   and sy (= ) be

the sample mean and sample sd, respectively, of the log-transformed data, yi =

ln(xi); i = 1, 2, ... , n.  Specifically, let

(1)

. (2)

Similarly let  and sx be the sample mean and sd of the raw data , x1 , x2 , ..

, xn, obtained by replacing y by x in equations (1) and (2), respectively.  In this

User’s Guide, irrespective of the underlying distribution,  :1, and  F1
2 represent

the mean and variance of the random variable X (in original units), whereas

: and  F2 are the mean and variance of its logarithm, given by Y=ln(X). 

4.0 Lognormal Distribution and Parameters of Interest

If Y = ln(X) is normally distributed with mean : and variance F2,  X is

said to be lognormally distributed with parameters : and F2 and is denoted by

LN(:, F2) .  It should be noted that : and F2 are not the mean and variance of

the lognormal random variable, X, but they are the mean and variance of the

log-transformed random variable Y, whereas  :1, and F1
2 represent the mean
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and variance of X. The parameters of interest of a two-parameter lognormal

distribution, LN(:, F2), are given as follows:

Mean (3) 

Median (4) 

Variance (5) 

Coefficient of Variation (6) 

Skewness (7) 

4.1 MLEs of the Parameters of Lognormal Distribution

For lognormal distributions, note that and sy (= ) are the maximum

likelihood estimators (MLEs) of :  and F, respectively.  The MLE of any

function of the parameters : and F2 is obtained by simply substituting these

MLEs in place of the parameters (Hogg and Craig, 1978, Bain and Engelhardt,

1992).  Therefore,  replacing  : and F by their MLEs in equations (3) through

(7) will result in the MLEs  (but biased) of the respective parameters of the

lognormal distribution. The program ProUCL computes all of  these MLEs for

lognormally distributed data sets.

4.2 Relationship Between Skewness and Standard Deviation, F

Note that for a lognormal distribution, the CV (given by equation (6)

above) and the skewness (given by equation (7)) depend only on  F.  Therefore,
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in this User’s Guide and also in the program ProUCL, the standard deviation,

F (sd of log-transformed variable), or its  MLE,  sy (= ) has been used as a

measure of  skewness of lognormal and of other positively skewed data sets.

The larger is the sd, the larger are the CV and the skewness. 

For example, for a lognormal distribution: with  F = 0.5, the skewness

= 1.75; with F =1.0, the skewness = 6.185; with  F =1.5, the skewness =

33.468; and with F = 2.0, the skewness = 414.36.  Thus, the skewness of a

lognormal distribution becomes very large as F starts approaching and

exceeding 2.0.

It is observed (Singh, Singh, Engelhardt (1997), and Singh et al.  (2000))

that for smaller sample sizes (such as smaller than 30), and for values of F

approaching 2.0 (and skewness approaching 414) , the use of the H-statistic

based UCL  results in impractical and  unacceptably large values.  The various

degrees of skewness of a data set as used in ProUCL and in this User’s Guide

are summarized as follows.

Skewness as a Function of F (or its MLE, sy = )

Standard Deviation       Skewness

F  < 0.5         Symmetric to mild skewness

0.5 # F  < 1.0 Mild Skewness to Moderate Skewness

1.0 # F < 1.5 Moderate Skewness to High Skewness

1.5 # F < 2.0 High skewness 

2.0 # F < 3.0 Extremely high skewness

F  $ 3.0 Not well-behaved data sets - require further

investigation



A-8

4.3 MLEs of the Quantiles of a Lognormal Distribution

For highly skewed (e.g., F exceeding 1.5),  lognormally  distributed

populations, the population mean,  :1,can exceed the higher quantiles (e.g.,

80%,  90%, 95%) of the distribution.  Therefore, the computation of these

quantiles is also of interest.  This is especially true when one wants to use the

MLEs of the higher order quantiles (e.g., 95%, 97.5% etc.) as an estimate of the

EPC term. The formulae to compute  these  quantiles are  briefly described

here. 

The pth quantile (or 100pth percentile), xp, of the distribution of a

random variable, X, is defined by the probability statement, P(X # xp) = p.  If

zp is the  pth quantile of  the standard normal random variable,  Z, with  P(Z #

zp) = p, then the pth quantile of a lognormal distribution is given by  xp = exp(:

+ zpF). The MLE of the pth quantile is given by

 = exp(:̂  + zpF̂ ).                           (8)

For example, on the average, 95% of the observations from a lognormal LN(:,

F2) distribution would lie below exp(: + 1.65F).  The 0.5th quantile of the

standard normal distribution is  z0.5 = 0, and the 0.5th quantile (or median) of

a lognormal distribution is M = exp(:), which is obviously smaller than the

mean,  :1, as  given by equation (3).   Also note that  the mean, :1,  is greater

than xp  if and only if F > 2zp.  For example, when  p = 0.80, zp = 0.845,  :1

exceeds

x 0.80 , the 80th  percentile if and only if F > 1.69, and, similarly, the  mean, :1,
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will exceed  the 95th percentile if and only if F >  3.29.  

The program ProUCL computes the MLEs of the 50% (median),  90%, 95%,

and 99% quantiles of a lognormally distributed data set.

4.4 MVUEs of Parameters of a Lognormal Distribution

Even though the sample AM, , is an unbiased estimator of the

population AM, it does not have the minimum variance (MV). The MV

unbiased  estimates (MVUEs) of and  of  a lognormal distribution  are

given as follows,

 (9)

, (10)

            

where the series expansion of the function gn(u) is given in Bradu and Mundlak

(1970), and Aitchison and Brown (1976).  Tabulations of this function are also

provided by Gilbert (1987).  Bradu and Mundlak (1970) give the MVUE of the

variance of the estimate :̂1,

. (11)

The square root of the variance given by equation (11) is called the standard

error (SE) of the estimate,  :̂1, given by equation (9).  Similarly, a MVUE  of

the  median of  a lognormal distribution is given by
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 (12)

For lognormal data, ProUCL computes these MVUEs given by equations  (9)

through (12).

5.0 Methods for Computing a UCL of the Unknown Population Mean  

The program, ProUCL, computes a (1-") 100 % UCL of the population

mean using the following ten  procedures. 

1. Student’s t-statistic  -  assumes  normality or approximate normality. 

2. Modified t-statistic -  for skewed distributions. 

3. Central Limit Theorem (CLT) - a non-parametric procedure.

4. Adjusted Central Limit Theorem  (Adjusted-CLT) - for skewed

distributions.

5. Land’s H-Statistic  -  assumes lognormality. 

6. Chebyshev Theorem using the sample arithmetic mean and sd (denoted

by Chebyshev (Mean, Std))  - a  non-parametric procedure.

7. Chebyshev Theorem using the MVUE of the parameters of a lognormal

distribution (denoted by Chebyshev (MVUE)) -  assumes lognormality.
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8. Jackknife procedure  - a non-parametric procedure.

9. Standard Bootstrap procedure  - a  non-parametric procedure.

10. Bootstrap t procedure - a non-parametric procedure.

The program computes a  (1-") 100 % UCL (except for the H-UCL) of

the mean  for any confidence coefficient (1-") value lying in the interval (0.5,

1.0).  For the computation of the H-UCL, only two confidence levels, namely,

0.90 and 0.95, are supported by ProUCL.  Based  upon the sample size, n,

skewness, and the data  distribution, the  program also makes

recommendations on how to obtain an appropriate 95% UCL of  the  unknown

population mean. These recommendations are  summarized in the

Recommendations and Summary  Section 6.0 of  this appendix.  The various

algorithms and  procedures used  to compute a (1-") 100% UCL of the

population mean  as incorporated in ProUCL are described as follows.

5.1  (1-") 100% UCL of the Mean Based Upon Student’s t-Statistic

The widely used  well-known Student’s t- statistic is given by,

(13)

where and sx are, respectively, the sample mean and sample standard

deviation obtained using raw data.  If the data are a random sample from a

normal population with mean, :1, and standard deviation, F1, then the

distribution of this statistic is the familiar Student's t distribution with  n!1
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degrees of freedom.  Let  t",  n!1 be the upper " quantile of the Student's t

distribution with n!1 degrees of  freedom.  

A  (1!")100 % UCL of the population mean, :1, is given by,

(14)

For a normally (when the skewness is about 0) distributed population, equation

(14) provides the best way of computing a UCL of the mean.  It should be

pointed out that even for mildly  to moderately skewed data sets (e.g., when F

starts approaching and exceeding 0.5), the UCL given by (14) may not provide

the desired coverage to the population mean.  This is especially true when the

sample size is smaller than 20-25 (Singh et al. 2000).  The situation gets worse

for higher values of the sd, F, or its estimate, sy.

5.2  (1-") 100%  UCL of the Mean Based Upon Modified-t  Statistic  for

Asymmetrical Populations

Chen (1995); Johnson (1978); Kleijnen, Kloppenburg, and Meeuwsen

(1986); and  Sutton (1993) suggested the use of a  modified  t-statistic for

testing the mean of a positively skewed distribution (including the lognormal

distribution).   The  (1 !")100 %  UCL of the mean thus obtained is given by

 ,                        (15)

where , an unbiased moment estimate (Kleijnen, Kloppenburg, and

Meeuwsen, 1986) of the third central  moment, is given as follows, 
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     (16)

It should be pointed out  that this modification for a skewed distribution

does not perform well even for mildly to moderately skewed data sets (e.g.,

when F starts approaching  and exceeding 0.75).  Specifically, it is observed

that the  UCL given by equation (15)  may not provide  the desired coverage

of the population mean,  :1, when F  starts  approaching and exceeding  0.75

(Singh, et al., 2000). This is especially true when the sample size is  smaller

than  20-25. This small sample size requirement increases as F increases.  For

example, when F starts approaching and exceeding 1.5, the UCL given by

equation (15) does  not provide the  specified coverage (e.g., 95%) even for

samples  as large as 100.

5.3 (1-") 100%  UCL of the Mean Based Upon The Central Limit Theorem

The Central Limit Theorem (CLT) states that the asymptotic distribution,

as  n approaches infinity, of the sample  mean, is normally distributed with

mean, :1, and variance, F1
2/n.  More precisely, the sequence of random

variables given by

   (17)

has a standard normal limiting distribution.  In practice, this means that for
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large sample sizes, n, the sample mean, , has an approximate normal

distribution irrespective of the underlying distribution function.   Since the

CLT method requires no distributional assumptions, this is  a non-parametric

method.

As noted by Hogg and Craig (1978), if F1 is replaced by the sample

standard deviation, sx, the normal approximation for large n is still valid.  This

leads to the following approximate large sample non-parametric  (1-") 100%

UCL of the mean,

(18)

An often cited rule of thumb for a sample size with the CLT method is

n $ 30.  However, this may not be adequate if the population is  skewed,

specifically when,  F starts exceeding 0.5 (Singh, Singh, Engelhardt, Nocerino

(2000)).  A refinement of the CLT approach, which makes an adjustment for

skewness as discussed by Chen (1995), is given as follows. 

5.4  (1-") 100% UCL of the Mean Based Upon The Adjusted Central Limit

Theorem (Adjusted -CLT)

The "adjusted-CLT" UCL is obtained if the standard normal quantile,

z" in the upper limit of equation (18) is replaced by (Chen, 1995)

(19)

Thus, the adjusted (1 !")100 %  UCL for the mean, , of  skewed



A-15

distributions is given by

                                               (20)

 ,  the coefficient of skewness (raw data)  is given by

Skewness (raw data)   =  ,    (21)

where an unbiased estimate of the third  moment, is given by equation

(16).

As with the modified-t UCL, it is observed that this adjusted-CLT UCL

may not provide adequate coverage to the population mean when  the

population is  skewed, specifically when F starts approaching and exceeding

0.75 (Singh, Singh, Engelhardt, Nocerino (2000)).  This is especially true when

the sample size is smaller than 20-25. This small sample size requirement

increases as  F increases.  For example, when F starts approaching and

exceeding 1.5, the UCL given by equation (20) does not provide the specified

coverage (e.g., 95%), even for samples as large as 100.

Thus, the UCLs based upon these skewness adjusted methods, such as

the Johnson’s modified t and Chen’s adjusted CLT, do not provide the

specified coverage to the population mean for mildly to  moderately skewed

(e.g.,  F  in (0.5, 1.0)) data sets, even for samples as large as 100.  The coverage

of the population  mean by these  UCLs  gets worse for highly skewed data

sets.
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5. 5 (1-") 100% UCL of the Mean Based Upon the H-Statistic (H-UCL)

The one-sided (1!")100% UCL for the mean, :1, of a lognormal

distribution as derived by Land (1971, 1975) is given as follows:

(22)

Tables of H-statistic values can be found in Land (1975) and also in Gilbert

(1987).  Theoretically, when the population is lognormal, Land (1971) showed

that the  UCL given by equation (22) possesses  optimal properties and is the

uniformly most accurate unbiased confidence limit.  However, it is noticed that

in practice,  the H-statistic based  results can be quite disappointing and

misleading especially when the data set consists of  outliers, or is a mixture

from two or more distributions (Singh, Singh, and Engelhardt, 1997, 1999).

Even a minor increase in the sd, sy, drastically inflates the MVUE of :1  and the

associated H-UCL.  The presence of  low as well as high data values increases

the  sd, sy, which in turn  inflates the H-UCL.  Furthermore, it is observed

(Singh, Singh, Engelhardt, and Nocerino, 2000) that for smaller sample sizes

(smaller than 15-25), and for values of F approaching 1.0 and higher (for

moderately skewed to highly skewed data sets), the use of H-statistic based

UCL  results  in impractical and  unacceptably large UCL values. 

5.6  (1-") 100% UCL of the Mean Based Upon The Chebyshev Theorem

(Using the Sample Mean and Sample Sd)

The two-sided Chebyshev theorem (Hogg and Craig, 1978) states that
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given a random variable,  X, with finite mean and standard deviation, :1 and

F1, we have

(23)

This result can be applied on  the sample mean, , to obtain a conservative

UCL for the population mean, :1.  For example, if the right side of equation

(23) is equated to 0.95, then k = 4.47, and UCL  =  is a conservative

95% upper confidence limit for the population mean.  Of course, this would

require the user to know the value of  F1.  The obvious modification would be

to replace  F1 with the sample standard deviation, sx, but since this is estimated

from data, the result is no longer guaranteed to be conservative.  In general the

following equation can be used to obtain a  (1-") 100% UCL of the population

mean,

.      (24)

A slight refinement of equation (24) is given (suggested by S. Ferson) as

follows,

.               (25)

The program, ProUCL, computes the Chebyshev (1-") 100% UCL of the

population  mean using equation (25). This UCL is denoted by Chebyshev

(Mean, Std) on the output of the program, ProUCL.  Since this Chebyshev

method requires no distributional assumptions about the data set under study,

this is a non-parametric procedure. This UCL may be used as an estimate of the
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upper confidence limit of the population mean when data are neither normal

nor lognormal, especially when sd, F (or its estimate, sy) starts approaching and

exceeding 1.5.  Recommendations on its use to a compute an estimate of the

EPC term are summarized in Section 6.
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5.7  (1-") 100% UCL of the Mean of a Lognormal Population Based Upon

the Chebyshev Theorem (Using the MVUE of Mean and its Standard

Error) 

The program ProUCL uses equation (23) on the MVUEs of lognormal

mean and sd to compute a UCL (denoted by (1-")100 % Chebyshev (MVUE)

)  of the population mean of a lognormal population.  In general, if :1 is an

unknown mean, :̂1 is an estimate, and F̂ (:̂1) is an estimate of the standard error

of :̂1, then the following equation, 

UCL = :̂1 +((1/") -1)1/2  F̂ (:̂1)               (26)

will give a  (1-") 100 % UCL for :1, which should tend to be conservative, but

this is not assured.  For example, for a lognormally distributed data set, a  95%

(with " =0.05) Chebyshev (MVUE) UCL of the mean can be obtained using the

following equation, 

UCL = :̂1 + (4.359)  F̂ (:̂1),    (27)

where, :̂1 and F̂ (:̂1) are given by equations (9) and (11), respectively.  Thus

for lognormally distributed data sets, the program, ProUCL, uses equation (26)

to compute a (1-") 100% Chebyshev (MVUE) UCL of mean.  It should be

noted that for lognormally distributed data sets,  some  recommendations  to

compute a 95% UCL of  population mean are summarized in Table A1 of the

Recommendations and Summary Section 6.0.  
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(1-") 100% UCL of the Mean Using the Jackknife and Bootstrap

Procedures 

Bootstrap and jackknife procedures as discussed by Efron (1981, 1982)

are nonparametric statistical techniques which can be used to reduce the bias

of point estimates and construct approximate confidence intervals for

parameters, such as the population mean.  These two procedures require no

assumptions regarding the statistical distribution (e.g., normal or lognormal)

for the underlying population, and can be applied to a variety of situations no

matter how complicated. 

Let x1, x2, ... , xn be a random sample of size n from a population with an

unknown parameter, 2 , and let  be an estimate of 2, which is a

function of all n observations.  For example, the parameter, 2, could be the

population  mean, and a reasonable choice for the estimate, , might be the

sample mean, .  Another choice for  is the MVUE of a mean of a lognormal

population, especially when dealing with lognormal data sets.

5.8  (1-") 100% UCL of the Mean Based Upon the Jackknife  Procedure 

In the jackknife approach, n estimates of 2 are computed by deleting one

observation at a time (Dudewicz and Misra (1988)).  Specifically, for each

index,  i, denote by 2̂ (i), the estimate of 2 (computed similarly as  2̂ ) when the

ith observation is omitted from the original sample of size n, and let the

arithmetic mean of these estimates be given by

(28)
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A quantity known as the ith "pseudo-value" is defined by

(29)

The jackknife estimator of 2 is given by

(30)

If the original estimate 2̂  is biased, then under certain conditions, part of the

bias is removed by the jackknife procedure, and an estimate of the standard

error of the jackknife estimate, J(2̂ ), is given by

(31)

Next, consider the t-type statistic given by

(32)

The t-type statistic  given by (32) has an approximate Student's t distribution

with n!1 degrees of freedom, which can be used to derive the following

approximate (1!")100% UCL  for 2, 

(33)

If the sample size,  n, is large, then the upper "  t-quantile in equation (33) can

be replaced with the corresponding upper "th standard normal quantile, z".

Observe, also, that when 2̂  is the sample mean, ,  then the jackknife estimate
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is also the sample  mean,  , and the estimate of the standard error given

by equation (31) simplifies to  sx/n
1/2,  and the UCL in equation (33) reduces to

the familiar t- statistic based UCL given by equation (14).  The program

ProUCL uses the jackknife estimate as the sample  mean leading to ,

which in turn translates equation  (33) to the UCL given by equation (14).

5.9  (1-") 100%  UCL of the Mean Based Upon Standard Bootstrap

Procedure

In the bootstrap procedure, repeated samples of size n are drawn with

replacement from a given set of observations.  The process is repeated a large

number of times (e.g., 2000), and each time an estimate,  2̂ i, of 2 is computed.

The estimates thus obtained are used to compute an estimate of the standard

error of  2̂ .  A  description of the bootstrap method,  illustrated by application

to the population  mean, :1, and the sample mean, , is given as follows:  

Step 1. Let (xi1, xi2, ... , xin) represent the ith sample of size n with

replacement from the original data set   (x1, x2, ..., xn).  Then

compute the sample mean and denote it by x
_

i.

Step 2. Perform Step 1 independently N times (e.g., 1000-2000), each

time calculating a new estimate.  Denote those estimates by

. The bootstrap estimate of the population mean is the

arithmetic mean, , of the N estimates  . The

bootstrap estimate of the standard error of the estimate, , is given

by,
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(34)

If some parameter, 2 (say, a population median), other than the mean is

of concern, with an associated estimate (e.g., the sample median), then the

same steps described above could be applied with the parameter and its

estimate used in place of :1 and .  Specifically, the estimate, 2̂ i , would be

computed, instead of ,  for each of the N bootstrap samples.  The general

bootstrap estimate, denoted by , is the arithmetic mean of the N estimates.

The difference, , provides an estimate of the bias of the estimate, 2̂ , and

the bootstrap estimate of the  standard error of  2̂  is

(35)

The (1!")100% standard bootstrap UCL  for 2 is given by

(36)

The program ProUCL computes the standard bootstrap UCL by using the

population AM and sample AM, respectively given by :1 and  x
_

.  It is observed

that the UCL obtained using the standard bootstrap procedure is quite similar

to the UCL obtained using the Student’s t-statistic as given by equation (14),

and, as such, does not adequately adjust  for skewness.
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5.10  (1-") 100% UCL of the Mean Based Upon Bootstrap t Procedure

Another variation of the bootstrap method, called the "bootstrap  t" by

Efron (1982), is a nonparametric procedure which uses the bootstrap

methodology to estimate quantiles of the pivotal quantity  t- statistic given by

equation (13).  Rather than using the quantiles of Student’s t-statistic, Hall

(1988) proposed to compute  estimates of the  quantiles of statistic given by

equation (13)  directly from the data.  

Specifically, in Steps 1 and 2 described above, if  is the sample mean

computed from the original data, and  and sx, i are the sample mean and

sample standard deviation computed from the ith resampling of the original

data, the N quantities  are computed and sorted, yielding

ordered quantities t(1) # t(2) # @@@ # t(N).  The estimate of the lower "th quantile

of the pivotal quantity in equation (13) is  t", B = t("N).  For example, if N = 1000

bootstrap samples are generated, then the 50th ordered value, t(50), would be the

bootstrap estimate of the lower 0.05th quantile of the pivotal quantity in

equation (13).  Then a (1-") 100% UCL of population mean based upon the

bootstrap-t procedure is given by

(37)

The program, ProUCL, computes the Bootstrap-t  UCL based upon the

quantiles obtained using the sample mean, .  It is observed that the UCL based

upon the bootstrap-t procedure is more conservative  than the  other UCLs

obtained using the Student’s t, modified t, adjusted CLT, and the standard

bootstrap procedures.  This is specially true for skewed data sets.  This
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procedure seems to adjust for skewness. However, this procedure was not

included in the Monte Carlo simulation  study conducted by Singh, Singh,

Engelhardt, and Nocerino  (2000). This procedure needs further investigation

to study the coverage probabilities provided by the UCL based upon the

bootstrap-t method.

Note: For lognormally distributed data sets, one may want to  use the jackknife

and  the standard bootstrap  methods on the MVUE of the population mean, :1,

given by equation (9).  However, these procedures are not included in the

program, ProUCL. 

6.0 Recommendations and  Summary

This section describes the summary and recommendations on the

computation of  a  95% UCL of  the unknown population arithmetic mean,  :1,

of a contaminant data distribution. These recommendations are based  upon the

findings of Singh, Singh, and Engelhardt (1997, 1999),  and Singh et al. (

2000).  Recommendations have been summarized  for: 1) normally  distributed

data sets, 2) lognormally distributed data sets, and 3) data sets which are

neither normal nor lognormal (non-parametric data).
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6.1 Recommendations  to Compute a 95% UCL of the Population Mean,

:1

6.1.1 Normally Distributed Data sets

• For normally distributed data sets, a UCL based upon the Student’s t-

statistic as given by equation (14)  provides the optimal UCL of the

population mean. Therefore,  for  normally distributed data sets,  one

should use a  95% UCL based upon Student’s t-statistic. 

• The 95% UCL of mean given by equation (14) based upon Student’s t

can also be used when the  sd of the log-transformed data is less than

0.5, or when the data set approximately follows a normal distribution.

6.1.2 Lognormally Distributed Data sets

For skewed  data sets, there is no simple solution to compute a  UCL of

the population mean, :1.  Singh et al. (2000) noted that the UCLs based upon

the skewness adjusted methods, such as the Johnson’s modified - t and Chen’s

adjusted CLT, do not provide the specified coverage  (e.g., 95%) to the

population mean even for mildly to  moderately  skewed (e.g.,  F  in (0.5, 1.0))

data sets  for samples  as large as 100.  The coverage of  the population  mean

by these UCLs  gets poorer (much smaller than the specified coverage) for

highly skewed data sets as defined in Section 4.2.

For lognormally distributed data sets with a standard deviation (sd),  F,

exceeding 1.0 (for moderately to highly skewed data),  the use of  Land’s H-
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statistic results in unacceptably large UCL values (H-UCL), especially for

samples of small sizes (e.g., smaller than 20-25).  Note that even a small

increase in the  sd, F ,  increases skewness considerably (equations (6) and

(7)).   For example,  for a lognormal distribution,  when F = 2.5, skewness ~

11825.1; and when F =3, skewness ~ 729555.  In practice, the occurrence of

such highly skewed data sets (e.g., F $3) is not very common.  Nevertheless,

these highly skewed data sets can arise occasionally and, therefore,  require

separate attention.  Singh et al. (2000) observed  that when the  sd,  F, starts

approaching  2.5  (that is,  for lognormal data,  when CV > 22.74 and skewness

> 11825.1),  even a 99% Chebyshev (MVUE) UCL fails to provide the desired

95% coverage for the population mean, :1.  This is especially true when the

sample size is small (<20-25).   For  such extremely skewed  data sets, the

larger of the two UCLs:  the  99% Chebyshev (MVUE) UCL and the non-

parametric  99% Chebyshev (Mean, Std) UCL,  may be used as an estimate of

the EPC term.  Another candidate to use as an estimate of the EPC term is the

UCL based upon Bootstrap-t procedure.  These issues  need further

investigation.  It is also desirable to study other distributions such as a Gamma

distribution to model the highly skewed environmental data sets. 

It is also noted that, as the sample size increases, the  H-UCL starts

behaving in a stable manner.  Therefore, depending upon the sd, F (actually its

 MLE  ), for lognormally distributed data sets,  one can always use the  H-

UCL for  samples of larger sizes (e.g., 50-70 or larger).  This large sample size

requirement increases  as the sd, , increases, as can be seen in Table A1.  The

program, ProUCL, can compute an H-UCL for samples of sizes up to 1000.

For lognormally distributed data sets of smaller sizes, some alternative

procedures to compute  a  95% UCL of  the  population  mean are summarized
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in the following Table  A1.

For lognormal distributions, since skewness (as defined in Section 4.2)

is a function of F, recommendations for the computation of the UCL of the

population mean are summarized in Table A1 for various values of the MLE 

 of F and the sample size, n.  Here  is ML estimate of  F, and is given by the

sd of log-transformed data.  Note that the following table is applicable to the

computation of a 95% UCL of the population AM based upon  lognormally

distributed data sets. 
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Table A1.  Summary Table for the Computation of a

95% UCL of the Unknown  Mean,  :1 of a Lognormal Population

 Sample Size, n Recommendation

           < 0.5 For all n ($5) Student’s t or H-UCL

0.5 #   < 1.0 For all n  H-UCL

1.0 #  < 1.5 n < 25 95% Chebyshev (MVUE) UCL

n $ 25 H-UCL

1.5 #  < 2.0

n<20 99% Chebyshev (MVUE) UCL

20# n<50 95% Chebyshev (MVUE) UCL

n$50  H-UCL

2.0 #  < 2.5

n<25 99% Chebyshev (MVUE) UCL

25 # n  < 70 95% Chebyshev (MVUE) UCL

n $ 70 H-UCL

2.5 #  < 3.0

n < 30 Larger  of (99% Chebyshev (MVUE) UCL,  

                  99% Chebyshev(Mean, Std))

30 # n <70 Larger  of (95% Chebyshev (MVUE) UCL,  

                  95% Chebyshev(Mean, Std))

n $70 H-UCL

3.0  #  

n small Needs further investigation

n>100 H-UCL
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6.1.3  Data sets Without a Discernable (non-parametric) Distribution 

• For non-parametric mildly to moderately skewed data sets (e.g., F  or its

estimate,   in the interval (0.5, 1)), one may use a 95% Chebyshev

(Mean, Std) UCL for the population  mean, :1.

• For populations which are neither normal  nor lognormal,  for

moderately to highly  skewed  data sets (e.g.,   in the interval (1.0,

2.0)), one may use a 97.5% Chebyshev (Mean, Std) UCL of the

population  mean, :1 , to obtain an estimate of the EPC term.

• For highly skewed to extremely highly skewed data sets with  in the

interval (2.0, 3.0),  one may use a  99% Chebyshev (Mean, Std) to

compute a 95% UCL of the population mean, :1. 

• Extremely skewed data sets with F exceeding  3.0, are badly behaved

and need further investigation.  It should be noted that for an extremely

skewed data set, even a  Chebyshev inequality based  99% UCL of the

mean fails to provide the desired coverage (e.g., 0.95) of the population

mean.  Thus, a Chebyshev inequality based UCL may not be used to

estimate the EPC term for data sets which are extremely highly skewed

with F approaching and exceeding 3.0.

• It is observed that the UCL based upon the non-parametric bootstrap-t

procedure is more conservative (larger) than the other UCLs obtained

using the Student’s t, modified t, adjusted CLT, and standard bootstrap

procedures.  This is specially true for skewed data sets.  The non-
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parametric bootstrap-t procedure was not included in the Monte Carlo

simulation  study conducted by Singh et al. (2000).  It is likely that the

UCL based upon the bootstrap-t  procedure may provide better coverage

to the population mean. This procedure needs further investigation. 

• It is also desirable to study other distributions, such as a Gamma

distribution, to model the highly skewed environmental data sets. 

6.2  Summary of the Procedure to Compute a 95% UCL of Population

Mean

• The first step in computing a UCL of a  population arithmetic mean  is

to test for the data distribution, such as  normality or lognormality of the

data set.  ProUCL has three procedures to test for normality: the

graphical  test based  upon a Q-Q plot, the Lilliefors test, and the

Shapiro-Wilk W  test. 

• ProUCL generates a  quantile-quantile (Q-Q) plot  to graphically test the

normality or lognormality of the data. On this graph, a  linear pattern

displayed by data suggests approximate  normality or lognormality.  On

this graph, points well-separated from the majority of data are potential

outliers. 

• After performing the normality test,  ProUCL informs the  user about the

data distribution (normal or lognormal).
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• For a  normally distributed (or approximately normally distributed)  data

set,  the user is advised to use Student’s-t distribution based UCL of the

mean.

• For lognormal data sets, the program, ProUCL, recommends (as

summarized in Table A1, Section 6.1) a procedure to obtain a 95% UCL

based upon the sample size and standard deviation of the log-

transformed data, .  ProUCL can compute a H-UCL for samples of size

up to 1000. 

• Non-parametric UCL computation methods such as the modified-t, CLT

method, adjusted CLT method,  bootstrap  and jackknife procedures are

also included in the program, ProUCL.   However, it is noted that non-

parametric UCLs  based upon these procedures do not provide adequate

coverage to the population mean  for  moderately skewed to highly

skewed  data sets (Singh et al., 2000).

• For data sets which are neither normal nor lognormal,  a non-parametric

UCL of the mean based upon the Chebyshev theorem is preferred. The

Chebyshev (Mean, Std) UCL does not depend upon distributional

assumptions  and can be used for moderately to highly skewed data sets

which are neither normal nor lognormal. 

• It should be noted that for extremely skewed data sets (e.g., with  

exceeding 3.0), even a  Chebyshev inequality based  99% UCL of the

mean fails to provide the desired coverage (e.g., 0.95) of the population

mean. A procedure to compute the EPC term based upon the Chebyshev
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(Mean, Std) UCL  is described in the recommendation Section 6.1. 

It should be pointed out that depending upon his or her application, the user

may decide to use (or not use) any of the 10 available procedures incorporated

in the program, ProUCL. 
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